Usare Gephi per visualizzare la partecipazione nei corsi online: un approccio di Social Learning Analytics

Contenuto principale dell'articolo

Ángel Hernández-García

Abstract

La formazione a distanza online pone grandi sfide, in quanto gli studenti devono adattarsi a processi di apprendimento auto-diretto, gli insegnanti devono adattarsi a un modo diverso di erogare contenuti formativi e conoscenza e i coordinatori di un corso devono far fronte a un maggior numero di studenti avendo meno tempo a disposizione per elaborare tutte le informazioni che vengono prodotte nell’ambiente di apprendimento.
Le tecniche di Social Learning Analytics forniscono strumenti e metodi che consentono di estrarre informazioni utili per migliorare il processo di apprendimento. Lo studio di caso presentato in questo articolo mostra come il software Gephi può essere utilizzato per fornire informazioni rilevanti che sono generalmente difficili da osservare da parte dei coordinatori dei corsi e dai docenti. Questo studio empirico utilizza i dati provenienti da un corso interdisciplinare con 656 studenti, dimostra l’utilità di Gephi per gli studi di Social Learning Analytics e illustra come Gephi può fornire indicatori significativi sull’attività degli studenti e sul loro impegno. Lo studio esamina anche le potenzialità del Social Learning Analytics per migliorare l’istruzione online attraverso la visualizzazione dei dati legati all’apprendimento.

Dettagli dell'articolo

Sezione
Articoli - Numero speciale
Biografia autore

Ángel Hernández-García, Universidad Politécnica de Madrid, Madrid

Departamento de Ingeniería de Organización, Administración de Empresas y Estadística, Escuela Técnica Superior de Ingenieros de Telecomunicación

Riferimenti bibliografici

Agudo-Peregrina, Á.F., Iglesias-Pradas, S., Conde-González, M.Á., & Hernández-García, Á. (2013). Can we predict success from log data in VLEs? Classification of interactions for learning analytics and their relation with performance in VLE-supported F2F and online learning. Computers in Human Behavior, 31, 542-550.

Alstete, J., & Beutell, N. (2004). Performance indicators in online distance learning courses: a study of management education. Quality Assurance in Education, 12(1), 6-14.

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. Proceedings of the Third International ICWSM Conference, USA, 361-362.

Beaudoin, M. F. (2002). Learning or lurking? Tracking the “invisible” online student. The Internet and Higher Education, 5(2), 147-155.

Buckingham-Shum, S., & Ferguson, R. (2012). Social Learning Analytics. Journal Of Educational Technology & Society, 15(3), 3-26.

Cambridge, D., & Perez-Lopez, K. (2012, April). First steps towards a social learning analytics for online communities of practice for educators. In Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (pp. 69-72). ACM.

Dawson, S. (2008). A study of the relationship between student social networks and sense of community. Educational Technology & Society, 11(3), 224-238.

Dawson, S., (2010). ‘Seeing’ the learning community: An exploration of the development of a resource for monitoring online student networking. British Journal of Educational Technology, 41(5), 736-752.

Davies, J., & Graff, M.G. (2005). Performance in e-learning: online participation and student grades. British Journal of Educational Technology, 36(4), 657-663.

Fruchterman, T.M.J., & Reingold, E.M. (1991), Graph drawing by force-directed placement. Software: Practice and Experience, 21(11), 1129-1164.

García-Saiz, D., Palazuelos, C., & Zorrilla, M. (2013). Data Mining and Social Network Analysis in the Educational Field: An Application for Non-expert Users. In Educational Data Mining: Applications and Trends. Berlin, Heidelberg, DE: Springer.

Gómez-Aguilar, D.A., Therón, R., & García-Peñalvo, F. J. (2009). Semantic Spiral Timelines Used as Support for e-Learning. Journal of Universal Computer Science, 15(7), 1526-1545.

Jacomy, M., Heymann, S., Venturini, T., & Bastian, M. (2012). ForceAtlas2, a graph layout algorithm for handy network visualization (forthcoming).

Hrastinski, S. (2008). What is online learner participation? A literature review. Computers & Education, 51(4), 1755-1765.

Long, P., & Siemens, G. Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE Review, 46(5), 31-40.

Macfadyen, L.P., Dawson, S. (2010). Mining LMS data to develop an “early warning system” for educators: A proof of concept. Computers & Education, 54(2), 588-599.

Macfadyen, L., & Dawson, S. (2012). Numbers are not enough. Why e-learning analytics failed to inform an institutional strategic plan. Educational Technology & Society, 15(3), 149-163.

Nurmela, K., Lehtinen, E., & Palonen, T. (1999). Evaluating CSCL Log Files by Social Network Analysis. In C. M. Hoadley and J. Roschelle (Eds.), Proceedings of the Computer Support for Collaborative Learning (CSCL) 1999 Conference (pp. 434-444). Palo Alto, CA: Stanford University.

Rabbany, R., ElAtia, S., Takaffoli, M., & Zaïane, O. R. (2013). Collaborative Learning of Students in Online Discussion Forums: A Social Network Analysis Perspective. In A. Peña-Ayala (Ed.), Educational Data Mining: Applications and Trends (pp. 1-30). Berlin, Heidelberg, DE: Springer.

Reffay, C., & Chanier, T. (2003). How Social Network Analysis can help to Measure Cohesion in Collaborative Distance-Learning. Designing for Change in Networked Learning Environments: Computer-Supported Collaborative Learning, 2, 343-352.

Sundararajan, B. (2010). Emergence of the Most Knowledgeable Other (MKO): Social Network Analysis of Chat and Bulletin Board Conversations in a CSCL System. Electronic Journal of E-Learning, 8(2), 191-208.

Tobarra, L., Robles-Gómez, A., Ros, S., Hernández, R., & Caminero, A. C. (2014). Analyzing the students’ behavior and relevant topics in virtual learning communities. Computers in Human Behavior, 31, 659- 669.

Wise, A.F., & Hausknecht, S. N. (2013). Learning Analytics for Online Discussions: A Pedagogical Model for Intervention with Embedded and Extracted Analytics. Proceedings of the Third International Conference on Learning Analytics and Knowledge (pp. 48-56), 8-12 April 2013. Leuven, BE/ New York, NY: ACM.