From digital computing to computational thinking

Main Article Content

Giorgio Olimpo


This paper proposes a short analysis of the main phases of software development, the approaches and conceptual tools that professionals typically adopt to tackle the complexity of those phases, and the possible meanings that this way of thinking may assume in educational processes. The main purpose is to offer a point of view on the educational potential of computational thinking that is deeper and more comprehensive than the coding oriented attitude widely assumed by stakeholders. The perspective on computational thinking that is provided involves cognitive skills of general value such as abstraction, representation, expression and communication and inquiry, and is not confined to the important but restrictive area of coding.

Article Details

Articles - Special Issue


Abell, S. K. (2008). Twenty years later: Does pedagogical content knowledge remain a useful idea?. International Journal of Science Education, 30(10), 1405-1416. doi:10.1080/09500690802187041

Ammann, D. P., & Offut, J. (2017). Introduction to Software Testing. Cambridge, UK:Cambridge University Press.

Barr, D., Harrison, J., & Conery, L. (2011). Computational Thinking: A Digital Age Skill for Everyone. Learning & Leading with Technology, 38(6), 20–23. Retrieved from

Bender, E., Hubwieser, P., Schaper, N., Margaritis, M., Berges, M., Ohrndorf, L., ... & Schubert, S. (2015). Towards a competency model for teaching computer science. Peabody Journal of Education, 90(4), 519-532. doi:10.1080/0161956X.2015.1068082

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing computational thinking in compulsory education – Implications for policy and practice. EUR 28295 EN; doi:10.2791/792158

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the Congress of the American Educational Research Association (pp. 1-25). Vancouver, CA: American Educational Research Association. Retrieved from

D’Amore B. (2014). Le tante soluzioni di un problema. La Vita Scolastica (GiuntiScuola), 69(1), 25. Retrieved from

D’Amore B., & Fandiño Pinilla, M. I. (2006). Che problema i problemi! L’insegnamento della matematica e delle scienze integrate, 29(6), 647. Retrieved from

Demo, B. G. (2013, July). Reading data schemas and knowing a db query interface in non technical secondary schools. Paper presented at X World Conference on Computers in Education, Toruń, Poland (pp. 112-120). Retrieved from

European Commission (2015). Relazione congiunta del Consiglio e della Commissione sull’attuazione del quadro strategico per la cooperazione europea nel settore dell’istruzione e della formazione (ET 2020) — Nuove priorità per la cooperazione europea nel settore dell’istruzione e della formazione. Gazzetta Ufficiale dell’Unione Europea. Retrieved from

European Commission. (2016). A new skills agenda for Europe. Working together to strengthen human capital, employability and competitiveness. Gazzetta Ufficiale dell’Unione Europea. Retrieved from

Fowler M. and Highsmith J. (2001). The Agile Manifesto. Retrieved from

Halpern, D. (2003). Thought and knowledge: An introduction to critical thinking (4th edition). Mahwah, NJ: Earlbaum.

O. Hazzan, T. Lapidot, N. Ragonis (2014). A Guide to Teaching Computer Science. London, UK: Springer-Verlag

Klahr, D., & Carver, S. M. (1988). Cognitive objectives in a LOGO debugging curriculum: Instruction, learning, and transfer. Cognitive Psychology, 20(3), 362-404. doi:10.1016/0010-0285(88)90004-7

Manilla L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle, A. (2014). Computational Thinking in K-9 Education. In M. Goldweber (Ed.), ITiCSE-WGR ‘14 Proceedings of the Working Group Reports of the 2014 on Innovation & Technology in Computer Science Education Conference (pp. 1-29). Uppsala, SE: Uppsala Universitet. doi:10.1145/2713609.2713610

Olimpo G. (2011). Information flows and graphic knowledge representations. Trentin G. (Eds.), Technology and knowledge flows: the power of network (pp. 91-132). Oxford, UK: Chandos Publishing.

Olimpo, G. (2015). Pensiero computazionale = buona programmazione e non solo. In V. Midoro (Ed.), La scuola ai tempi del digitale (pp. 60-84). Milano, IT: Franco Angeli Editore.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.

Parnas D. (1972). On the criteria to be used in decomposing systems into modules. Communications of the ACM, 14(1), 1053-1058. Retrieved from

Polya G. (1945). How to Solve It. Princeton, NJ: Princeton University Press (trad. it. Come risolvere i problemi di matematica, UTET Università, Torino, 2016).

Peyton Jones, S., Mitchell, B., & Humphreys, S. (2013, April). Computing at school in the UK. Microsoft Research Paper, 4. Retrieved from

Strödter, C. (2012, November). Data modeling and database systems as part of general education in CSE. In Proceedings of the 7th Workshop in Primary and Secondary Computing Education (pp. 137-140). New York, NY: ACM. doi:10.1145/2481449.2481481

The Royal Society. (2012). Shut down or restart? The way forward for computing in UK Schools. London, UK: The Royal Society. Retrieved from

Verborgh, R. (2013). Programming is an art [blog post]. Retrieved from

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127-147. doi:10.1007/s10956-015-9581-5

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. doi:10.1145/1118178.1118215

Wing J. (2017). Computational Thinking’s Influence on Research and Education for All. International Journal of Educational Technology, 25(2). doi:10.17471/2499-4324/922